Poly(ethylene glycol)-modified phospholipids prevent aggregation during covalent conjugation of proteins to liposomes.
نویسندگان
چکیده
Liposome aggregation is a major problem associated with the covalent attachment of proteins to liposomes. This report describes a procedure for coupling proteins to liposomes that results in little or no change in liposome size. This is achieved by incorporating appropriate levels of poly(ethylene glycol)-modified lipids into the liposomes. The studies employed thiolated avidin-D coupled to liposomes containing the thio-reactive lipid N-(4-(p-maleimidophenyl)butyryl)dipalmitoyl phosphatidylethanolamine (1 mol % of total lipid) and various amounts of MePEG-S-POPE (monomethoxypoly(ethylene glycol) linked to phosphatidylethanolamine via a succinate linkage). The influence of PEG chain length and density was also assessed. The presence of PEG on the surface of liposomes is shown to provide an effective method of inhibiting aggregation and the corresponding increase in liposome size during the covalent coupling of avidin-D. A balance between the size of the PEG used and the amount of PEG-lipid incorporated into the liposome had to be achieved in order to maintain efficient coupling. Optimal coupling efficiencies in combination with minimal aggregation effects were achieved using 2 mol % MePEG2000-S-POPE (PEG of 2000 MW) or 0.8 mol % MePEG5000-S-POPE (PEG of 5000 MW). At these levels, the presence of PEG did not affect the biotin binding activity of the covalently attached avidin. The ability of the resulting liposomes to specifically target to biotinylated cells is demonstrated.
منابع مشابه
Monoclonal antibody-based quantitation of poly(ethylene glycol)-derivatized proteins, liposomes, and nanoparticles.
Covalent attachment of poly(ethylene glycol) (PEG) molecules to drugs, proteins, and liposomes is a proven technology for improving their bioavailability, safety, and efficacy. Qualitative and quantitative analysis of PEG-derivatized molecules is important for both drug development and clinical applications. We previously reported the development of a monoclonal IgM antibody (AGP3) to PEG. We n...
متن کاملIjprbs 202
The paper discusses general problems in using PEG for conjugation to high or low molecular weight molecules. Poly (ethylene glycol) (PEG) is a highly investigated polymer for the covalent modification of biological macromolecules and surfaces for many pharmaceutical and biotechnical applications. PEGylation is the process of covalent attachment of polyethylene glycol (PEG) polymer chains to ano...
متن کاملAccumulation of protein-coated liposomes in an extravascular site: influence of increasing carrier circulation lifetimes.
The primary objective of this work was to test whether increased blood levels and circulation lifetimes result in increased passive targeting of protein-coated liposomal drug carriers. The system used to evaluate this was based on i.v. injection of 100 nm of distearoyl phosphatidylcholine/cholesterol liposomes with covalently bound streptavidin. The circulation lifetime of these liposomes was i...
متن کاملProtein–Polymer Conjugation via Ligand Affinity and Photoactivation of Glutathione S-Transferase
A photoactivated, site-selective conjugation of poly(ethylene glycol) (PEG) to the glutathione (GSH) binding pocket of glutathione S-transferase (GST) is described. To achieve this, a GSH analogue (GSH-BP) was designed and chemically synthesized with three functionalities: (1) the binding affinity of GSH to GST, (2) a free thiol for polymer functionalization, and (3) a photoreactive benzophenon...
متن کاملEffect of PEG Pairing on the Efficiency of Cancer-Targeting Liposomes
Standardized poly(ethylene glycol)-modified (PEGylated) liposomes, which have been widely used in research as well as in pre-clinical and clinical studies, are typically constructed using PEG with a molecular weight of 2000 Da (PEG(2000)). Targeting ligands are also generally conjugated using various functionalized PEG(2000)). However, although standardized protocols have routinely used PEG(200...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioconjugate chemistry
دوره 6 2 شماره
صفحات -
تاریخ انتشار 1995